五子棋AI:实现逻辑与相关背景探讨(下) | 木戈手机站

木戈手机站

当前位置: 首页 » 攻略 » 五子棋AI:实现逻辑与相关背景探讨(下)

五子棋AI:实现逻辑与相关背景探讨(下)

前文回顾


在上篇文章中,我们约定了一种衡量格子价值的方式,如下表。

综合价值排序 己方价值 敌方价值 对应的奖励数值
1 Lv1 ?
\(2^{20}\)
2 ? Lv1
\(2^{16}\)
3 Lv2 ?
\(2^{12}\)
4 Lv2
\(2^{8}\)
5 Lv3
\(2^{4}\)
6 Lv4
\(2^{0}\)

在该表中,对不同的情形,设计了不同的奖励数值,这些数值大多是采用经验公式,人为估计的数值,并不是最优良的数值。同样的,在上表中的除前两类为,其余都可根据实际情况进一步的细分权重,这里给出一个样例供大家参考/理解:

综合价值排序 己方价值 敌方价值 对应的奖励数值
3.1 Lv2 Lv2
\(2^{13}\)
3.2 Lv2 Lv3
\(2^{12}\)
3.3 Lv2 Lv4
\(2^{11}\)

同样是能构成杀招(Lv2等级),能顺便堵死对面杀招/优良的位置自然是更好的。

在附录中给出了详细的权重表

本篇中我们将基于遗传算法讨论如何让AI学习奖励值。

遗传算法概述


遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传机制的优化算法。它用于寻找问题的最优解,特别适用于复杂的优化问题和搜索问题。遗传算法基于达尔文的自然选择理论,通过模拟生物进化过程来逐步改进解决方案。

遗传算法的基本步骤如下:

  1. 初始化:创建一个初始种群,种群中的每一个个体(通常称为染色体或解)是问题的一个潜在解。

  2. 评估:计算种群中每个个体的适应度值,这通常通过一个目标函数来进行,适应度值表示个体的优劣。

  3. 选择:根据适应度值选择个体进行繁殖,优良个体有更高的概率被选择,以生成下一代种群。

  4. 交叉(Crossover):通过将两个个体的部分基因交换,生成新的个体。这一步模仿了生物的交配过程,可以产生新的解。

  5. 变异(Mutation):在某些个体中随机改变基因,以引入新的基因变异。这一步帮助算法跳出局部最优解,增加解的多样性。

  6. 替换:将一部分个体替换为最优良的个体,保留最优秀的基因,使得种群的型状不会出现下降或震荡。

  7. 终止:判断算法是否满足终止条件,如达到最大迭代次数或找到足够好的解。如果满足条件,算法终止,返回最优解;否则,返回第2步。

遗传算法实现思路

初始化


本文所设计的AI决策方案共包含12个参数,其中11个是奖励权重

\(R_i\)

,1个是对劣质选项接受度

\(K\)

我们可以定义

\(N\)

个智能体,分别用初始权重进行初始化,一般来说,

\(N\)

可以取10~100,最好选择偶数,否则会有一些不必要的麻烦。

初始化过程可以用数学公式表示为:

其中,

\(W_0\)

表示初始权重,

\(W_i^{t=0}\)

表示第

\(t\)

代的第

\(i\)

个个体。

评估


本例中,采用让AI对弈的方式,根据AI在棋局中的表现评估AI得分,具体流程如下:

  1. 生成一个从1到N的随机排列,并将其按顺序分配给AI
  2. 将序号为1、3、5、…的AI与序号为2、4、6、…的AI对弈
  3. 将棋局结果记录到AI得分表内。
  4. 是否完成

    \(N_R\)

    轮对局,倘若未完成,则返回到1。
  5. 对AI进行排名。

交叉


当完成排名时,让排名后50%的AI及前50%的AI两两组合,其数学公式如下

其中:

\(c\)

为学习因子(交叉率),表示AI在学习过程中对新知识(权重)的接受程度,

\(c\)

越大,AI越倾向于接受新权重,

\(c\)

越小,AI越倾向于保留旧权重。交叉率

\(c\)

一搬可取

\(0.01\sim0.3\)

替换


首先定义局部最优个体和全局最优个体。

  • 局部最优

    \(W_b^t\)

    :如果一个个体在本轮中的综合成绩排名为第一名(胜场最多),那么称其为局部最优个体。

  • 全局最优

    \(W_B\)

    :当只进行一轮迭代时,全局最优个体等于局部最优个体,即:

    \(W_B=W_b^{t=0}\)

    。当进行了不止一局游戏时,将新的局部最优个体与全局最优个体进行

    \(N_R\)

    轮对局,倘若全局最优个体获胜,则其依旧为全局最优个体,倘若其失败,则局部最优个体成为新的全局最优个体。可以用数学公式表示为:

为了保留最优的性状,将排名靠后的部分个体替换为全局最优个体,记替换率为

\(s\)

,一般取

\(0.02\sim 0.1\)

变异


在变异过程中,个体的基因发生随机的改变。定义变异系数

\(m\)

,其绝对了变异的程度,一般来说

\(m\)

的范围在

\(0.01\sim0.1\)

数学公式如下:

其中

\(W_{i,j}^{t}\)

表示第

\(t\)

代的第

\(i\)

个个体的第

\(j\)

个权重,

\(m_j\)

是在

\((-m,m)\)

内的随机数。

流程汇总


以下给出遗传算法学习的流程

  1. 初始化种群

  2. 创建棋局,各个个体互相对战,统计得分并进行排名

  3. 判断是否达到停止条件,若不是则继续。

  4. 依排名将个体两两匹配,进行交叉操作

  5. 将排名靠后的个体分别替换为局部最优个体和全局最优个体

  6. 进行变异操作

  7. 转至步骤2

附录


行为优先级

  • Lv1:下子直接取胜,或在一回合内取胜。
  • Lv2:下在大概率在若干回合内取胜。
  • Lv3:能够迫使对方一直防御。
  • Lv4:收益较低。


初始权重表

综合价值排序 己方价值 敌方价值 对应的奖励数值
1 Lv1 ?
\(2^{20}\)
2 ? Lv1
\(2^{16}\)
3.1 Lv2 Lv2
\(2^{13}\)
3.2 Lv2 Lv3
\(2^{12}\)
3.3 Lv2 Lv4
\(2^{11}\)
4.1 Lv3 Lv2
\(2^{9}\)
4.2 Lv4 Lv2
\(2^{8}\)
5.1 Lv3 Lv3
\(2^{6}\)
5.2 Lv3 Lv4
\(2^{4}\)
6.1 Lv4 Lv3
\(2^{2}\)
6.2 Lv4 Lv4
\(2^{0}\)


符号说明

符号 意义 数值范围

\(W\)
个体(权重)

\(R\)
行动的奖励

\(K\)
对劣选项的接受程度

\(N\)
种群大小 10~100

\(N_R\)
评估时的对局轮数 10~100

\(T\)
迭代次数 20~500

\(c\)
交叉率 0.01~0.03

\(s\)
替换率 0.02~0.1

\(m\)
变异率 0.01~0.1
猜你喜欢
本类排行